Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.656
Filtrar
1.
PeerJ ; 12: e16858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313029

RESUMO

A multitude of species engages in social interactions not only with their conspecifics but also with other species. Such interspecific interactions can be either positive, like helping, or negative, like aggressive behaviour. However, the physiological mechanisms of these behaviours remain unclear. Here, we manipulated the serotonin system, a well-known neurohormone for regulating intraspecific aggressive behaviour, to investigate its role in interspecific aggression. We tested whether serotonin blockade affects the aggressive behaviour of a coral reef fish species (Ctenochaetus striatus) that engages in mutualistic interactions with another species, the cleaner fish (Labroides dimidiatus). Although this mutualistic cleaning relationship may appear positive, cleaner fish do not always cooperate and remove ectoparasites from the other coral reef fish ("clients") but tend to cheat and bite the client's protective layer of mucus. Client fish thus often apply control mechanisms, like chasing, to deter their cleaner fish partners from cheating. Our findings show that blocking serotonin receptors 5-HT2A and 5-HT2C with ketanserin reduced the client fish's aggressive behaviour towards cleaner fish, but in the context where the latter did not cheat. These results are evidence of the involvement of serotonin in regulating aggressive behaviour at the between-species social interactions level. Yet, the direction of effect we found here is the opposite of previous findings using a similar experimental set-up and ecological context but with a different client fish species (Scolopsis bilineatus). Together, it suggests that serotonin's role in aggressive behaviour is complex, and at least in this mutualistic ecological context, its function is species-dependent. This warrants, to some extent, careful interpretations from single-species studies looking into the physiological mechanisms of social behaviour.


Assuntos
Perciformes , Serotonina , Humanos , Animais , Ketanserina/farmacologia , Serotonina/farmacologia , Agressão , Interação Social , Recifes de Corais , Peixes/parasitologia , Perciformes/fisiologia
2.
Sci Rep ; 14(1): 1396, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228622

RESUMO

Non-alcoholic steatohepatitis (NASH) is a major health problem leading to liver fibrosis and hepatocellular carcinoma, among other diseases, and for which there is still no approved drug treatment. Previous studies in animal models and in LX-2 cells have indicated a role for serotonin (5-HT) and 5-HT receptors in stellate cell activation and the development of NASH. In the current study, we investigated the extent to which these findings are applicable to a human NASH in vitro model consisting of human liver spheroids containing hepatocytes and non-parenchymal cells. Treatment of the spheroids with 5-HT or free fatty acids (FFA) induced fibrosis, whereas treatment of the spheroids with the 5-HT receptor antagonists ketanserin, pimavanserin, sarpogrelate, and SB269970 inhibited FFA-induced fibrosis via a reduction in stellate cell activation as determined by the expression of vimentin, TGF-ß1 and COL1A1 production. siRNA-based silencing of 5-HT2A receptor expression reduced the anti-fibrotic properties of ketanserin, suggesting a role for 5-HT receptors in general and 5-HT2A receptors in particular in the FFA-mediated increase in fibrosis in the human liver spheroid model. The results suggest a contribution of the 5-HT receptors in the development of FFA-induced human liver fibrosis with implications for further efforts in drug development.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Ketanserina/farmacologia , Serotonina/farmacologia , Serotonina/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Antagonistas da Serotonina/farmacologia , Fígado/metabolismo , Fibrose , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Receptores de Serotonina/metabolismo , Neoplasias Hepáticas/patologia
3.
Nature ; 626(7998): 427-434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081299

RESUMO

Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1-3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson's disease, hyperkinetic movement disorders and depression4-6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington's disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5-2.8 Å, demonstrating the structural basis for transport and inhibition. Reserpine and ketanserin occupy the substrate-binding pocket and lock VMAT2 in cytoplasm-facing and lumen-facing states, respectively, whereas tetrabenazine binds in a VMAT2-specific pocket and traps VMAT2 in an occluded state. The structures in three distinct states also reveal the structural basis of the VMAT2 transport cycle. Our study establishes a structural foundation for the mechanistic understanding of substrate recognition, transport, drug inhibition and pharmacology of VMAT2 while shedding light on the rational design of potential therapeutic agents.


Assuntos
Microscopia Crioeletrônica , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Sítios de Ligação , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Ketanserina/química , Ketanserina/metabolismo , Ketanserina/farmacologia , Reserpina/química , Reserpina/metabolismo , Reserpina/farmacologia , Serotonina/química , Serotonina/metabolismo , Especificidade por Substrato , Tetrabenazina/química , Tetrabenazina/metabolismo , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/ultraestrutura
4.
Biochemistry (Mosc) ; 88(6): 758-769, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37748872

RESUMO

The recombinant B6.CBA-D13Mit76C mouse strain is characterized by an altered sensitivity of 5-HT1A receptors and upregulated 5-HT1A gene transcription. Recently, we found that in B6.CBA-D13Mit76C mice, chronic fluoxetine treatment produced the pro-depressive effect in a forced swim test. Since 5-HT2A receptor blockade may be beneficial in treatment-resistant depression, we investigated the influence of chronic treatment (14 days, intraperitoneally) with selective 5-HT2A antagonist ketanserin (0.5 mg/kg), fluoxetine (20 mg/kg), or fluoxetine + ketanserin on the behavior, functional activity of 5-HT1A and 5-HT2A receptors, serotonin turnover, and transcription of principal genes of the serotonin system in the brain of B6.CBA-D13Mit76C mice. Ketanserin did not reverse the pro-depressive effect of fluoxetine, while fluoxetine, ketanserin, and fluoxetine + ketanserin decreased the functional activity of 5-HT1A receptors and Htr1a gene transcription in the midbrain and hippocampus. All tested drug regimens decreased the mRNA levels of Slc6a4 and Maoa in the midbrain. These changes were not accompanied by a significant shift in the levels of serotonin and its metabolite 5-HIAA. Notably, ketanserin upregulated enzymatic activity of tryptophan hydroxylase 2 (TPH2). Thus, despite some benefits (reduced Htr1a, Slc6a4, and Maoa transcription and increased TPH2 activity), prolonged blockade of 5-HT2A receptors failed to ameliorate the adverse effect of fluoxetine in the case of abnormal functioning of 5-HT1A receptors.


Assuntos
Fluoxetina , Serotonina , Camundongos , Animais , Camundongos Endogâmicos CBA , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Ketanserina/farmacologia , Receptor 5-HT1A de Serotonina/genética
5.
Cytometry A ; 103(8): 655-663, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36974731

RESUMO

The identification of kinematic subpopulations is of paramount importance to understanding the biological nature of the sperm heterogeneity. Nowadays, the data of motility parameters obtained by a computer-assisted sperm analysis (CASA) system has been used as input to distinct algorithms to identify kinematic subpopulations. In contrast, the images of the trajectories were depicted only as examples of the patterns of motility in each subpopulation. Here, python code was written to reconstruct the images of trajectories, from their coordinates, then the images of trajectories were used as input to a machine learning clustering algorithm of classification, and the subpopulations were described statistically by the motility parameters. Finally, the images of trajectories in each subpopulation were displayed in a way we called Pollock plots. Semen samples of boar sperm were treated with distinct concentrations of ketanserin (an antagonist of the 5-HT2 receptor of serotonin) and untreated samples were used as a control. The motility of sperm in each sample was analyzed at 0 and 30 min of incubation. Six subpopulations were found. The subpopulation 2 presented the highest values of velocities at 0 or 30 min. After 30 min of incubation, the ketanserin increased the values of the curvilinear velocity at high concentrations, whereas the linearity and the straight velocity decreased. Our computational model permits better identification of the kinematic subpopulations than the traditional approach and provides insights onto the heterogeneity of the response to ketanserin; thus, it could significantly impact the research on the relationship between sperm heterogeneity-fertility.


Assuntos
Sêmen , Motilidade dos Espermatozoides , Masculino , Animais , Suínos , Sêmen/fisiologia , Ketanserina/farmacologia , Espermatozoides/fisiologia , Análise do Sêmen/métodos
6.
Behav Pharmacol ; 34(2-3): 92-100, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752335

RESUMO

2,5-dimethoxy-4-methylamphetamine (DOM) is a kind of hallucinogen of phenylalkylamine. Psychedelic effects mainly include audiovisual synesthesia, complex imagery, disembodiment etc. that can impair control and cognition leading to adverse consequences such as suicide. By now, there are no specific drugs regarding the management of classic hallucinogen use clinically. We evaluated the effects of three 5-HT 2A receptor antagonists ketanseirn, M100907 and olanzapine on hallucination-like behavior in therapeutic and preventive administration with male C57BL/6J mice. Two models were used to evaluate the therapeutic potential of antagonists, one is head-twitch response (HTR) and the other is locomotion. Effects of ketanserin, M100907 and olanzapine on DOM-induced HTR were studied in preventive and therapeutic administration, respectively. In the preventive administration, the ID 50 values of ketanseirn, M100907 and olanzapine were 0.4 mg/kg, 0.005 mg/kg and 0.25 mg/kg. In the therapeutic administration, the ID 50 values of ketanseirn, M100907 and olanzapine were 0.04 mg/kg, 0.005 mg/kg and 0.03 mg/kg. Secondly, locomotor activity induced by DOM was performed to further evaluate the efficacy of three compounds. In locomotion, M100907(0.005 mg/kg) whenever in preventive or therapeutic administration, reduced the increase of movement distance induced by DOM. Although ketanserin (0.4 mg/kg) in the preventive administration also decreased the movement distance induced by DOM, it was alone administrated to influence the locomotor activity. Through HTR and locomotion, we compared the efficacy and latent side effects of ketanserin, M100907 and olanzapine against hallucinogenic like action induced by DOM. Our study provided additional experimental evidence on specific therapeutic drugs against hallucinogenic behavior induce by representative hallucinogen DOM.


Assuntos
Alucinógenos , Metanfetamina , Camundongos , Animais , Masculino , Ketanserina/farmacologia , Alucinógenos/farmacologia , Olanzapina/farmacologia , Camundongos Endogâmicos C57BL , Receptor 5-HT2A de Serotonina
7.
Neuropsychopharmacology ; 48(7): 1011-1020, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807609

RESUMO

Psilocybin has been shown to improve symptoms of depression and anxiety when combined with psychotherapy or other clinician-guided interventions. To understand the neural basis for this pattern of clinical efficacy, experimental and conceptual approaches that are different than traditional laboratory models of anxiety and depression are needed. A potential novel mechanism is that acute psilocybin improves cognitive flexibility, which then enhances the impact of clinician-assisted interventions. Consistent with this idea, we find that acute psilocybin robustly improves cognitive flexibility in male and female rats using a task where animals switched between previously learned strategies in response to uncued changes in the environment. Psilocybin did not influence Pavlovian reversal learning, suggesting that its cognitive effects are selective to enhanced switching between previously learned behavioral strategies. The serotonin (5HT) 2 A receptor antagonist ketanserin blocked psilocybin's effect on set-shifting, while a 5HT2C-selective antagonist did not. Ketanserin alone also improved set-shifting performance, suggesting a complex relationship between psilocybin's pharmacology and its impact on flexibility. Further, the psychedelic drug 2,5-Dimethoxy-4-iodoamphetamine (DOI) impaired cognitive flexibility in the same task, suggesting that this effect of psilocybin does not generalize to all other serotonergic psychedelics. We conclude that the acute impact of psilocybin on cognitive flexibility provides a useful behavioral model to investigate its neuronal effects relevant to its positive clinical outcome.


Assuntos
Alucinógenos , Psilocibina , Masculino , Feminino , Animais , Ratos , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Ketanserina/farmacologia , Alucinógenos/farmacologia , Ansiedade , Antagonistas do Receptor 5-HT2 de Serotonina , Serotonina , Cognição
8.
Behav Neurosci ; 137(2): 143-153, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36548050

RESUMO

Optimal levels of anxiety are critical to memory consolidation, but maladaptive anxiety can disrupt memory acquisition. Serotonergic activity within the amygdala influences both anxiety-like behavior and aversive memory consolidation. To evaluate the effects of serotoninergic manipulations within the basolateral amygdala (BLA) on anxiety-like behavior and aversive memory in rats tested in the plus-maze discriminative avoidance task (PMDAT). The PMDAT investigates aversive memory and anxiety-like behavior simultaneously in rodents. Three-month-old male Wistar rats received bilateral infusions (1 µL per side) of saline, 8-OH-DPAT (5-HT1 agonist; 10 nmol), WAY100135 (5-HT1 antagonist; 0.9 nmol), ketanserine (5-HT 2 antagonist; 10 nmol), or fluoxetine (serotonin reuptake inhibitor; 1.6 nmol) into the BLA and were submitted to PMDAT training session 15 min later. In the test, 24 hr later, animals were re-exposed to the apparatus without the infusion of drugs, and aversive memory was evaluated. (a) 8-OH-DPAT did not affect memory or anxiety, but impaired avoidance behavior toward the aversive arm during training; (b) fluoxetine, WAY100135 and ketanserin impaired memory formation; (c) ketanserin decreased anxiety-like behavior; and (d) none of the treatments induced motor changes. The results showed that an increase in serotonin (5-HT) availability or the blockade of 5HT1A and 5HT2A BLA receptors impaired aversive memory formation. However, only 5HT2A receptor antagonism induced anxiolytic effects. Thus, both memory and anxiety-like behavior can be modified by changes in serotonergic transmission in the basolateral amygdala, but the effects on both phenomena seem to be mediated by different mechanisms related to serotonergic transmission. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Complexo Nuclear Basolateral da Amígdala , Ratos , Masculino , Animais , Ratos Wistar , Serotonina/farmacologia , Fluoxetina/farmacologia , Ketanserina/farmacologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Ansiedade , Aprendizagem da Esquiva
9.
Int J Neuropsychopharmacol ; 26(2): 97-106, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36342343

RESUMO

BACKGROUND: Lysergic acid diethylamide (LSD) is currently being investigated in psychedelic-assisted therapy. LSD has a long duration of acute action of 8-11 hours. It produces its acute psychedelic effects via stimulation of the serotonin 5-hydroxytryptamine-2A (HT2A) receptor. Administration of the 5-HT2A antagonist ketanserin before LSD almost fully blocks the acute subjective response to LSD. However, unclear is whether ketanserin can also reverse the effects of LSD when administered after LSD. METHODS: We used a double-blind, randomized, placebo-controlled, crossover design in 24 healthy participants who underwent two 14-hour sessions and received ketanserin (40 mg p.o.) or placebo 1 hour after LSD (100 µg p.o.). Outcome measures included subjective effects, autonomic effects, acute adverse effects, plasma brain-derived neurotrophic factor levels, and pharmacokinetics up to 12 hours. RESULTS: Ketanserin reversed the acute response to LSD, thereby significantly reducing the duration of subjective effects from 8.5 hours with placebo to 3.5 hours. Ketanserin also reversed LSD-induced alterations of mind, including visual and acoustic alterations and ego dissolution. Ketanserin reduced adverse cardiovascular effects and mydriasis that were associated with LSD but had no effects on elevations of brain-derived neurotrophic factor levels. Ketanserin did not alter the pharmacokinetics of LSD. CONCLUSIONS: These findings are consistent with an interaction between ketanserin and LSD and the view that LSD produces its psychedelic effects only when occupying 5-HT2A receptors. Ketanserin can effectively be used as a planned or rescue option to shorten and attenuate the LSD experience in humans in research and LSD-assisted therapy. TRIAL REGISTRY: ClinicalTrials.gov (NCT04558294).


Assuntos
Alucinógenos , Humanos , Ketanserina/farmacologia , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Estudos Cross-Over , Fator Neurotrófico Derivado do Encéfalo , Voluntários Saudáveis , Método Duplo-Cego
10.
Cells ; 11(19)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36230998

RESUMO

The glutamatergic nerve endings of a rat prefrontal cortex (PFc) possess presynaptic 5-HT2A heteroreceptors and mGlu2/3 autoreceptors, whose activation inhibits glutamate exocytosis, and is measured as 15 mM KCl-evoked [3H]D-aspartate ([3H]D-asp) release (which mimics glutamate exocytosis). The concomitant activation of the two receptors nulls their inhibitory activities, whereas blockade of the 5-HT2A heteroreceptors with MDL11,939 (1 µM) strengthens the inhibitory effect elicited by the mGlu2/3 receptor agonist LY329268 (1 µM). 5-HT2A receptor antagonists (MDL11,939; ketanserin; trazodone) amplify the impact of low (3 nM) LY379268. Clozapine (0.1-10 µM) mimics the 5-HT2A agonist (±) DOI and inhibits the KCl-evoked [3H]D-asp overflow in a MDL11,939-dependent fashion, but does not modify the (±) DOI-induced effect. mGlu2 and 5-HT2A proteins do not co-immunoprecipitate from synaptosomal lysates, nor does the incubation of PFc synaptosomes with MDL11,939 (1 µM) or clozapine (10 µM) modify the insertion of mGlu2 subunits in synaptosomal plasma membranes. In conclusion, 5-HT2A and mGlu2/3 receptors colocalize, but do not physically associate, in PFc glutamatergic terminals, where they functionally interact in an antagonist-like fashion to control glutamate exocytosis. The mGlu2/3-5-HT2A metamodulation could be relevant to therapy for central neuropsychiatric disorders, including schizophrenia, but also unveil cellular events accounting for their development, which also influence the responsiveness to drugs regimens.


Assuntos
Clozapina , Receptores de Glutamato Metabotrópico , Trazodona , Animais , Autorreceptores/metabolismo , Clozapina/farmacologia , Ácido D-Aspártico/farmacologia , Exocitose/fisiologia , Ácido Glutâmico/metabolismo , Ketanserina/farmacologia , Córtex Pré-Frontal/metabolismo , Ratos , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Serotonina , Trazodona/farmacologia
11.
Psychopharmacology (Berl) ; 239(12): 3847-3857, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36278982

RESUMO

RATIONALE: We have discovered that rats at the age of 18 months begin to twitch their heads spontaneously (spontaneous head twitching, SHT). To date, no one has described this phenomenon. OBJECTIVES: The purpose of this study was to characterize SHT pharmacologically and to assess some possible mechanisms underlying SHT. METHODS: Wistar male rats were used in the study. Animals at the age of 18 months were qualified as HSHT (SHT ≥ 7/10 min observations) or LSHT (SHT < 7/10 min observations). Quantitative real-time PCR with TaqMan low-density array (TLDA) approach was adopted to assess the mRNA expression of selected genes in rat's hippocampus. RESULTS: HSHT rats did not differ from LSHT rats in terms of survival time, general health and behavior, water intake, and spontaneous locomotor activity. 2,5-dimethoxy-4-iodoamphetamine (DOI) at a dose of 2.5 mg/kg increased the SHT in HSHT and LSHT rats, while ketanserin dose-dependently abolished the SHT in the HSHT rats. The SHT was reduced or abolished by olanzapine, clozapine, risperidone, and pimavanserin. All these drugs have strong 5-HT2A receptor-inhibiting properties. Haloperidol and amisulpride, as antipsychotic drugs with a mostly dopaminergic mechanism of action, did not influence SHT. Similarly, escitalopram did not affect SHT. An in-depth gene expression analysis did not reveal significant differences between the HSHT and the LSHT rats. CONCLUSIONS: SHT appears in some aging rats (about 50%) and is permanent over time and specific to individuals. The 5-HT2A receptor strongly controls SHT. HSHT animals can be a useful animal model for studying 5-HT2A receptor ligands.


Assuntos
Antipsicóticos , Clozapina , Ratos , Animais , Masculino , Ratos Wistar , Receptor 5-HT2A de Serotonina , Ketanserina/farmacologia , Antipsicóticos/farmacologia
12.
Psychopharmacology (Berl) ; 239(11): 3551-3565, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36107207

RESUMO

RATIONALE: The 5-HT2A receptor is the major target of classic hallucinogens. Both DOI (2,5-dimethoxy-4-iodoamphetamine) and lisuride act at 5-HT2A receptors, and lisuride shares comparable affinity with DOI and acts as a partial agonist at 5-HT2A receptors. However, not like DOI, lisuride lacks hallucinogenic properties. Impulsive decision-making refers to the preference for an immediate small reinforcer (SR) over a delayed large reinforcer (LR). OBJECTIVES: The current study aims to compare the effects of DOI and lisuride on impulsive decision-making and further to investigate the possible receptor mechanisms responsible for the actions of the two drugs. METHODS: Impulsive decision-making was evaluated in male Sprague-Dawley rats by the percentage of choice for the LR in delay discounting task (DDT). Delay to the LR changed in an ascending order (0, 4, 8, 16, and 32 s) across one session. RESULTS: DOI (0.5 and 1.0 mg/kg) increased impulsive decision-making, and the effects of DOI (1.0 mg/kg) were blocked by the 5-HT2A receptor antagonist ketanserin (1.0 mg/kg) rather than the 5-HT2C receptor antagonist SB-242084 (1.0 mg/kg). Contrarily, lisuride (0.1, 0.3, and 0.5 mg/kg) decreased impulsive decision-making. The effects of lisuride (0.3 mg/kg) were not antagonized by ketanserin (1.0 mg/kg), selective 5-HT1A antagonist WAY-100635 (1.0 mg/kg), or selective dopamine D4 receptor antagonist L-745870 (1.0 mg/kg) but were attenuated by the selective dopamine D2/D3 receptor antagonist tiapride (40 mg/kg). CONCLUSIONS: DOI and lisuride have contrasting effects on impulsive decision-making via distinct receptors. DOI-induced increase of impulsivity is mediated by the 5-HT2A receptor, while lisuride-induced inhibition of impulsivity is regulated by the dopamine D2/D3 receptor.


Assuntos
Desvalorização pelo Atraso , Alucinógenos , Animais , Masculino , Ratos , Dopamina/farmacologia , Alucinógenos/farmacologia , Comportamento Impulsivo , Ketanserina/farmacologia , Lisurida/farmacologia , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina , Receptor 5-HT2C de Serotonina , Serotonina/farmacologia , Cloridrato de Tiaprida/farmacologia
13.
Toxicon ; 218: 57-65, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36113683

RESUMO

Rhinella marina toad is abundant in Brazil. Its poison contains cardiac glycosides called bufadienolides, which are extensively investigated for their bioactivity. Our aim was to characterize the vasoactivity of Rhinella marina poison (RmP) on the aorta of male Wistar rats. For this, the RmP was first collected and processed to obtain an alcoholic extract. To determine cardiovascular effects of RmP, we performed in vivo tests by administering RmP intravenously in doses of 0.1-0.8 mg/kg. Vascular reactivity was also performed through concentration-response curves to RmP (10 ng/mL to 200 µg/mL) in aortic segments with and without endothelium. RmP induced a concentration-dependent contraction in rat aorta which was partly endothelium-mediated. Nitric oxide contributes with this response in view that incubation with L-NAME increased the contractile response. Additionally, treatment with indomethacin [cyclooxygenase, (COX) inhibitor], nifedipine (L-type voltage-gated calcium channels blocker), and BQ-123 (ETA receptors antagonist) decreased maximum response, and ketanserin (5-HT2 receptors antagonist) decreased pEC50, suggesting active participation of these pathways in the contractile response. On the other hand, apocynin (NADPH oxidase inhibitor) did not alter contractility. Incubation with prazosin (α1-adrenergic receptor antagonist) abolished the contractile response, suggesting that the RmP-induced contraction is dependent on the adrenergic pathway. In the Na+/K+ ATPase protocol, a higher Emax was observed in the RmP experimental group, suggesting that RmP potentiated Na+/K+ATPase hyperpolarizing response. When this extract was injected (i.v.) in vivo, increase in blood pressure and decrease in heart rate were observed. The results were immediate and transitory, and occurred in a dose-dependent manner. Overall, these data suggest that the poison extract of R. marina toad has an important vasoconstrictor action and subsequent vasopressor effects, and its use can be investigated to some cardiovascular disorders.


Assuntos
Bufanolídeos , Venenos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/farmacologia , Animais , Bufanolídeos/toxicidade , Bufo marinus/metabolismo , Canais de Cálcio , Endotélio Vascular , Hemodinâmica , Indometacina/farmacologia , Ketanserina/farmacologia , Masculino , Metanol/farmacologia , NADPH Oxidases , NG-Nitroarginina Metil Éster , Nifedipino/farmacologia , Óxido Nítrico/metabolismo , Prazosina/farmacologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Ratos Wistar , Serotonina/farmacologia , Vasoconstritores
14.
Bull Exp Biol Med ; 174(2): 205-209, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36600039

RESUMO

The effect of ketanserin on inflammation, liver fibrosis, and microviscosity of the plasma and mitochondrial membranes of hepatocytes was studied on young (3 months) and old (9 months) male Wistar rats with experimental liver cirrhosis. Ketanserin reduced inflammation, area of the connective tissue, and liver damage and improved serum biochemical parameters in rats of both age groups; in old rats, the effects were more pronounced than in young animals. In old rats, ketanserin reduced polarity of hepatocyte plasma and mitochondrial membranes in the area of protein-lipid contacts, which determined higher effectiveness of ketanserin during the treatment of liver cirrhosis in aged animals.


Assuntos
Cirrose Hepática Experimental , Fígado , Ratos , Masculino , Animais , Ketanserina/farmacologia , Ketanserina/uso terapêutico , Cirrose Hepática Experimental/patologia , Ratos Wistar , Hepatócitos/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Inflamação/patologia
15.
Biochem Biophys Res Commun ; 587: 131-138, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34872001

RESUMO

BACKGROUND/AIM: Previously, we showed that transcription factor 21 (TCF21) promotes chicken preadipocyte differentiation. However, the genome-wide TCF21 binding sites and its downstream target genes in chicken adipogenesis were unknown. METHODS: ChIP-Seq and RNA-Seq were used to screen candidate targets of TCF21. qPCR and luciferase reporter assay were applied to verify the sequencing results. Western blotting, oil red-O staining and pharmacological treatments were performed to investigate the function of 5-hydroxytryptamine receptor 2A (HTR2A), one of the bonafide direct downstream binding targets of TCF21. RESULTS: A total of 94 candidate target genes of TCF21 were identified. ChIP-qPCR, RT-qPCR, and luciferase reporter assay demonstrated that HTR2A is one of the bonafide direct downstream binding targets of TCF21. HTR2A expression in adipose tissue was upregulated in fat line broilers. Also, the abundance of HTR2A gradually increased during the adipogenesis process. Interestingly, pharmacological enhancement or inhibition of HTR2A promoted or attenuated the differentiation of preadipocytes, respectively. Furthermore, HTR2A inhibition impaired the TCF21 promoted adipogenesis. CONCLUSIONS: We profiled the genome-wide TCF21 binding sites in chicken differentiated preadipocytes revealing HTR2A as the direct downstream target of TCF21 in adipogenesis.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Proteínas Aviárias/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Galinhas/genética , Genoma , Receptor 5-HT2A de Serotonina/genética , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Anfetaminas/farmacologia , Animais , Proteínas Aviárias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Ketanserina/farmacologia , Luciferases/genética , Luciferases/metabolismo , Masculino , Ligação Proteica , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Transdução de Sinais
16.
Pediatr Res ; 91(3): 556-564, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33790408

RESUMO

BACKGROUND: Severe neonatal hyperbilirubinemia has been known to cause the clinical syndrome of kernicterus and a milder one the syndrome of bilirubin-induced neurologic dysfunction (BIND). BIND clinically manifests itself after the neonatal period as developmental delay, cognitive impairment, and related behavioral and psychiatric disorders. The complete picture of BIND is not clear. METHODS: The Gunn rat is a mutant strain of the Wistar rat with the BIND phenotype, and it demonstrates abnormal behavior. We investigated serotonergic dysfunction in Gunn rats by pharmacological analyses and ex vivo neurochemical analyses. RESULTS: Ketanserin, the 5-HT2AR antagonist, normalizes hyperlocomotion of Gunn rats. Both serotonin and its metabolites in the frontal cortex of Gunn rats were higher in concentrations than in control Wistar rats. The 5-HT2AR mRNA expression was downregulated without alteration of the protein abundance in the Gunn rat frontal cortex. The TPH2 protein level in the Gunn rat raphe region was significantly higher than that in the Wistar rat. CONCLUSIONS: It would be of value to be able to postulate that a therapeutic strategy for BIND disorders would be the restoration of brain regions affected by the serotonergic dysfunction to normal operation to prevent before or to normalize after onset of BIND manifestations. IMPACT: We demonstrated serotonergic dysregulation underlying hyperlocomotion in Gunn rats. This finding suggests that a therapeutic strategy for bilirubin-induced neurologic dysfunction (BIND) would be the restoration of brain regions affected by the serotonergic dysfunction to normal operation to prevent before or to normalize after the onset of the BIND manifestations. Ketanserin normalizes hyperlocomotion of Gunn rats. To our knowledge, this is the first study to demonstrate a hyperlocomotion link to serotonergic dysregulation in Gunn rats.


Assuntos
Bilirrubina , Kernicterus , Animais , Humanos , Hiperbilirrubinemia/complicações , Kernicterus/prevenção & controle , Ketanserina/farmacologia , Ratos , Ratos Gunn , Ratos Wistar
17.
Respir Physiol Neurobiol ; 294: 103768, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34343692

RESUMO

Acute intermittent hypoxia (AIH) modifies the functioning of the respiratory network, causing respiratory motor facilitation in anesthetized animals and a compensatory increase in pulmonary ventilation in freely behaving animals. However, it is still unclear whether the ventilatory facilitation induced by AIH in unanesthetized animals is associated with changes in the respiratory pattern. We found that Holtzman male rats (80-150 g) exposed to AIH (10 × 6% O2 for 30-40 s every 5 min, n = 9) exhibited a prolonged (30 min) increase in baseline minute ventilation (P < 0.05) compared to control animals (n = 13), combined with the occurrence of late expiratory peak flow events, suggesting the presence of active expiration. The increase in ventilation after AIH was also accompanied by reductions in arterial CO2 and body temperature (n = 5-6, P < 0.05). The systemic treatment with ketanserin (a 5-HT2 receptor antagonist) before AIH prevented the changes in ventilation and active expiration (n = 11) but potentiated the hypothermic response (n = 5, P < 0.05) when compared to appropriate control rats (n = 13). Our findings indicate that the ventilatory long-term facilitation elicited by AIH exposure in unanesthetized rats is linked to the generation of active expiration by mechanisms that may depend on the activation of serotonin receptors. In contrast, the decrease in body temperature induced by AIH may not require 5-HT2 receptor activation.


Assuntos
Hipóxia/fisiopatologia , Ketanserina/farmacologia , Ventilação Pulmonar/fisiologia , Mecânica Respiratória/fisiologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Ventilação Pulmonar/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Mecânica Respiratória/efeitos dos fármacos , Volume de Ventilação Pulmonar/fisiologia
18.
Pharmacol Res Perspect ; 9(3): e00768, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34014044

RESUMO

Fibrotic processes in the liver of non-alcoholic steatohepatitis (NASH) patients cause microcirculatory dysfunction in the organ which increases blood vessel resistance and causes portal hypertension. Assessing blood vessel function in the liver is challenging, necessitating the development of novel methods in normal and fibrotic tissue that allow for drug screening and translation toward pre-clinical settings. Cultures of precision cut liver slices (PCLS) from normal and fibrotic rat livers were used for blood vessel function analysis. Live recording of vessel diameter was used to assess the response to endothelin-1, serotonin and soluble guanylate cyclase (sGC) activation. A cascade of contraction and relaxation events in response to serotonin, endothelin-1, Ketanserin and sGC activity could be established using vessel diameter analysis of rat PCLS. Both the sGC activator BI 703704 and the sGC stimulator Riociguat prevented serotonin-induced contraction in PCLS from naive rats. By contrast, PCLS cultures from the rat CCl4 NASH model were only responsive to the sGC activator, thus establishing that the sGC enzyme is rendered non-responsive to nitric oxide under oxidative stress found in fibrotic livers. The role of the sGC pathway for vessel relaxation of fibrotic liver tissue was identified in our model. The obtained data shows that the inhibitory capacities on vessel contraction of sGC compounds can be translated to published preclinical data. Altogether, this novel ex vivo PCLS method allows for the differentiation of drug candidates and the translation of therapeutic approaches towards the clinical use.


Assuntos
Cirrose Hepática/fisiopatologia , Fígado/irrigação sanguínea , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Guanilil Ciclase Solúvel/fisiologia , Vasoconstrição , Trifosfato de Adenosina/metabolismo , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/fisiologia , Tetracloreto de Carbono , Endotelina-1/farmacologia , Ketanserina/farmacologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos Sprague-Dawley , Ratos Wistar , Serotonina/farmacologia , Transdução de Sinais , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
19.
Psychophysiology ; 58(6): e13822, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33772794

RESUMO

The interest in lysergic acid diethylamide (LSD) has sparked again due to its supposed positive effects on psychopathological conditions. Yet, most research focuses on the actions of LSD on the central nervous system. The interaction with the autonomic nervous system (ANS) has been neglected so far. Therefore, the aim was to assess the effects of LSD and the serotonin 2A receptor antagonist ketanserin on the ANS as assessed by heart rate variability (HRV) measures and their correlation with subjective drug-induced effects in a randomized, placebo-controlled crossover trial. Thus, ANS activity was derived from electrocardiogram recordings after intake of placebo, LSD or ketanserin, and LSD by calculating R-peak-based measures of sympathetic and parasympathetic activity. Repeated measure ANOVA and partial correlation for HRV measures and subjective experience questionnaires were performed. LSD predominantly increased sympathetic activity, while ketanserin counteracted this effect on the ANS via an increase of parasympathetic tone. Sympathetic activity was positively and parasympathetic activity negatively associated with psychedelic effects of LSD. Furthermore, Placebo HRV measures predicted subjective experiences after LSD intake. The association between trait ANS activity and LSD-induced subjective experiences may serve as a candidate biomarker set for the effectiveness of LSD in the treatment of psychopathological conditions.


Assuntos
Anti-Hipertensivos/farmacologia , Sistema Nervoso Autônomo/efeitos dos fármacos , Alucinógenos/farmacologia , Ketanserina/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Adulto , Eletrocardiografia , Feminino , Voluntários Saudáveis , Frequência Cardíaca/fisiologia , Humanos , Masculino , Inquéritos e Questionários , Adulto Jovem
20.
Neuropsychopharmacology ; 46(3): 537-544, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33059356

RESUMO

Growing interest has been seen in using lysergic acid diethylamide (LSD) in psychiatric research and therapy. However, no modern studies have evaluated subjective and autonomic effects of different and pharmaceutically well-defined doses of LSD. We used a double-blind, randomized, placebo-controlled, crossover design in 16 healthy subjects (eight women, eight men) who underwent six 25 h sessions and received placebo, LSD (25, 50, 100, and 200 µg), and 200 µg LSD 1 h after administration of the serotonin 5-hydroxytryptamine-2A (5-HT2A) receptor antagonist ketanserin (40 mg). Test days were separated by at least 10 days. Outcome measures included self-rating scales that evaluated subjective effects, autonomic effects, adverse effects, plasma brain-derived neurotrophic factor levels, and pharmacokinetics up to 24 h. The pharmacokinetic-subjective response relationship was evaluated. LSD showed dose-proportional pharmacokinetics and first-order elimination and dose-dependently induced subjective responses starting at the 25 µg dose. A ceiling effect was observed for good drug effects at 100 µg. The 200 µg dose of LSD induced greater ego dissolution than the 100 µg dose and induced significant anxiety. The average duration of subjective effects increased from 6.7 to 11 h with increasing doses of 25-200 µg. LSD moderately increased blood pressure and heart rate. Ketanserin effectively prevented the response to 200 µg LSD. The LSD dose-response curve showed a ceiling effect for subjective good effects, and ego dissolution and anxiety increased further at a dose above 100 µg. These results may assist with dose finding for future LSD research. The full psychedelic effects of LSD are primarily mediated by serotonin 5-HT2A receptor activation.


Assuntos
Alucinógenos , Dietilamida do Ácido Lisérgico , Método Duplo-Cego , Feminino , Alucinógenos/farmacologia , Voluntários Saudáveis , Humanos , Ketanserina/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...